Ab4d.SharpEngine v1.0 published

by abenedik 8. December 2023 11:30

Ab4d.SharpEngine logo

Ab4d.SharpEngine v1.0 has been published!

The new cross-platform 3D rendering engine is ready for apps that work on Windows, Linux, macOS, Android and iOS. The engine uses Vulkan, which is a next generation graphics API that provides high-efficiency, cross-platform access to modern GPUs. The engine is also built by using the latest .Net technologies like Numerics and harware intrinsics. The combination of Vulkan and highly optimized .Net code provides super fast rendering. Based on long-time experience with Ab3d.PowerToys and Ab3d.DXEngine I have designed the API for the new engine to be very easy to use. Especially users of the Ab3d.PowerToys and Ab3d.DXEngine libraries should feel right at home.

The new engine can work on almost all devices that support .Net runtime. It can run on high end PCs and tiny Rasberry PI computers (with full hardware accelerated graphics). By using a software rendering LLVM pipe, the engine can also run on systems without a graphics card (for example, a web server, virtual machine or tiny embedded device). This provides many new very interesting options, for example, showing 3D graphics on a display that controls a CNC machine and runs on a Rasberry PI or some other embedded device. See here and here for more info.

The Ab4d.SharpEngine can be integrated into almost any UI framework. The following UI frameworks are currently supported: WPF, WinUI 3, Avalonia, MAUI, SDL / Glfw, LinuxFramebuffer. Better support for WinForms is coming soon. In all other UI framework it is also possible to render to an offscreen texture and than show that as a bitmap. Another proof that the engine is meant for any 3D developer is also that the engine supports any 3D coordinate system (y-up or z-up; left or right-handed; see the second screenshot below). What is more, the engine's main assembly, Ab4d.SharpEnine, does not have any third-party dependencies. To be able to provide great cross-platform capabilities, the engine even have a build-in png reader and writer, so you do not need to use platform specific bitmap libraries.

The first version of Ab4d.SharpEngine still lacks some of the features from Ab3d.PowerToys and Ab3d.DXEngine. But it should already have all the tools to create great apps with 3D graphics. Here are some of the screenshots:

3D model from fbx file with shown edge lines
Custom 3D coordinate system with Ab3d.SharpEngine
Ab4d.SharpEngine in an Avalonia UI application on macOS (Input events sample)
Ab4d.SharpEngine in an Avalonia application on Ubuntu Linux (3D lines sample)
Ab4d.SharpEngine in a generic SDL / Glfw application on Rasberry PI 4

The easiest way to start exploring the new engine is by checking the samples project that is hosted on GitHub: https://github.com/ab4d/Ab4d.SharpEngine.Samples. Note that some of the existing samples will be improved in the following days and many new samples are planned to be added.

The Ab4d.SharpEngine is distributed only by NuGet packages and cannot be installed by using a commercial version installer (as it was possible with other products). To use the engine it needs to be activated by calling the SetLicense method. The samples come with a special license that can be used only by the samples. To use the engine in your applications, you will need to get a trial license from ab4d.com/trial (no email is required) or purchase a commercial license and then activate the commercial license.

The purchase options provide the standard "Single developer", "Team developer", "Site developer" and "Corporate developer" options that define how many developers are allowed to use the library. The standard license allows developing applications for Windows, Linux and macOS - it is called a "Desktop developer" license. To develop apps for mobile devices (Android and iOS) an additional "Mobile developer" license is required. With a standard commercial license you are allowed to use the Ab4d.SharpEngin to create applications for uses that do not have the Ab4d.SharpEngine license. But if you want to create a commercial library that uses Ab4d.SharpEngine, then a new "SDK license" is required. Contact us for more information.

To celebrate the launch, there is a 20% discount for all Ab4d.SharpEngine licenses. The discount is valid until January 7th, 2024.

I know that some of the Ab3d.PowerToys and Ab3d.DXEngine users did not look at the development of a new engine with a lot of gratitude. That development meant that less time was dedicated to the existing engines. I admit that lately not a lot of work has been done for other libraries. But this will change now. Next week, a new maintenance version of Ab3d.PowerToys and Ab3d.DXEngine will be published. That version will have some fixes and smaller improvements already implemented in the last few months.

What is more, for Q1 2024 I plan to release a new major version of the Ab3d.PowerToys and Ab3d.DXEngine. The following are planned new features:

  • Add support for Screen Space Ambient Occlusion (SSAO) that will significantly improve the visual quality.
  • Add new options to render pixels and point clouds (world-size pixels in addition to screen-size; render circular pixels or pixels with custom textures).
  • Add support for rendering 3D lines and line segments to an object ID bitmap (can be used for faster line hit testing).
  • Add options to copy only part of the object ID bitmap from GPU memory to CPU memory - this would make checking for hit objects much faster.
  • Trying to improve the performance of calculating edge lines by using oct-tree.

For 2024, I would also like to introduce a new product that would allow importing 3D models from STEP and IGES file formats that are commonly used by CAD applications. Later, there would also be improved support for geometric and surface modeling that is based on mathematical surfaces and not triangles.

So, it looks like 2024 will be another very busy year.

Please try the new Ab4d.SharpEngine. I really hope you will like it and that it will help you build awesome apps and bring 3D graphics "where no 3D graphics has gone before" (adapted from).

Tags: , ,

SharpEngine

Ab4d.SharpEngine beta 2 comes with many new samples

by abenedik 18. April 2023 09:30

The second official beta version of the new cross-platform 3D rendering engine has been published. You can get the new samples from: https://github.com/ab4d/Ab4d.SharpEngine.Samples (on GitHub also click on the Watch button to be informed of future changes).

The new version comes with many new samples that demonstrate a lot of functionality of the new engine. There are samples that demonstate cameras, mouse camera controller, materials, lights, different 3D objects and lines, model importers and animation. The following screenshot shows the samples running in a WinUI 3.0 application:

Ab4d.SharpEngine Vulkan samples in WinUI 3.0 application

You can see that the samples are organized in a similar way as the samples for Ab3d.PowerToys and Ab3d.DXEngine.

Because the engine can run on multiple platforms and UI frameworks, most samples are now defined in a common samples project (Ab4d.SharpEngine.Samples.Common). That project uses a generic UI provider that can create UI elements like Labels, CheckBoxes, ComboBoxes, Sliders, Buttons and other elements that are required for the sample. Then the project for the specific platform references that common project and provides rendering of the UI. This way the same sample code can be used for WPF, WinUI and Avalonia. The Avalonia sample works on Windows and without any change in code the same sample also runs on Linux and macOS (see screenshot with Rider IDE in the back):

Ab4d.SharpEngine Vulkan samples in Avalonia application running on Linux

Ab4d.SharpEngine Vulkan samples in Avalonia application running on macOS

There are also two special samples for Android. They show only a single 3D scene. Their purpose is to demonstrate two different ways on how to initialize the engine in Android. From there on, the code to create and manipulate the 3D scene is the same as for desktop operating systems. The following screenshot shows the engine running in Android:

Ab4d.SharpEngine sample in Android application

The current version does not support iOS yet. The problem there is that AOT (ahead-of-time) compilation that is required for iOS does not support function pointers (https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/proposals/csharp-9.0/function-pointers) that are used by the engine to communicate with Vulkan. It is interesting that for Android or desktop it is possible to use AOT compilation and there function pointers work without problems. If you have any recommendations on how to use function pointers on iOS, I would be glad to hear that. Otherwise, it seems that a special build of SharpEngine will be required for iOS. That build would use a different and less efficient way to call Vulkan functions (using standard delegates and UnmanagedFunctionPointer attribute). This needs some additional research so the support for iOS has been moved to the next version.

The major goal of this beta version was to provide new samples that demonstrate how to use the engine. But there were also many improvements behind the scene.

The most important is updated code for sharing the rendered 3D scene with WinUI and Avalonia. In this case the 3D scene that is rendered by Vulkan stays in the GPU memory and is shared by the WinUI or Avalonia. The code for WinUI now uses SwapChainPanel instead of SurfaceImageSource. This is faster and better supported - SurfaceImageSource had problems on older computers or computers with integrated Intel GPU. In Avalonia the previous code for sharing texture created OpenGL vertex and pixel shaders and rendered the shared Vulkan texture to an OpenGL context. This was very complex and did not work well on all platforms. The developers of the Avalonia UI were also aware that this was not done well, so we worked together to define a new interface that can be used for sharing an external texture with Avalonia (after some private discussions with the developers the following was issued: External GPU memory interop (OpenGL, Vulkan, DirectX). The new version of the engine uses that new interface. This works very well so that shared texture can be used on computers where the previous approach did not work. What is more, Avalonia currently uses OpenGL to render its user interface, but there already exists a build of Avalonia that uses Vulkan to render the interface. This will be publicly available in one of the future versions. This means that it will be even easier and faster to share the 3D scene created with Ab4d.SharpEngine because whole application could use the same Vulkan device.

If you have not tested the beta 1 version, I would like to encourage you to try the new beta version. If you know how to create a 3D scene by using Ab3d.PowerToys, then it should be easy to work with the new library because the general concepts are the same. There are some differences in object names, but when working with the new engine, you will quickly see that the new API is much more polished than when using the Ab3d.PowerToys and Ab3d.DXEngine. The problem with those two libraries was that they were based on WPF 3D object model. That object model was extended by Ab3d.PowerToys and later by Ab3d.DXEngine objects. Because of this in those two libraries there exists multiple ways to define 3D objects: based on GeometryModel3D, Visual3D and on SceneNodes from DXEngine. Now, the 3D objects are all derived from SceneNode. All object grouping is done by GroupNode (instead of Model3DGroup, ModelVisual3D, ContentVisual3D, SceneNode). Also, when using Ab4d.DXEngine you need to use some tricks (using SetDXAttribute method) to define advanced properties on WPF materials. Now all material properties are directly accessible.

As promised before, the work on Ab3d.PowerToys and Ab3d.DXEngine will not stop. There are already many improvements and fixes in the current development version. Now I will focus on providing some additional new features and then prepare a new release. So if you have any recommendations, it is now a great time to provide that.

Tags: , ,

SharpEngine

The first beta version of a new cross-platform rendering engine has been published

by abenedik 15. December 2022 14:03

I am really glad to inform you that the first beta version of the Ab4d.SharpEngine has been published. 

Ab4d.SharpEngine logo

Ab4d.SharpEngine is a cross-platform 3D rendering engine for desktop and mobile .Net applications.

The existing rendering engine, Ab3d.DXEngine, uses DirectX 11. Because of that, it can only be used on Windows. The new engine uses Vulkan API.  And because it is built using .NET 6, the new engine is truly cross-platform and can be used on Windows, Linux (including Raspberry PI 4), macOS, Android and iOS. 

I know that now you would want to ask me: what about web? I am monitoring the status of Blazor with WebAssembly. I think that things are developing in the right direction but currently this technology is not yet capable enough for a more complex application with 3D graphics. The main problem is that WebAssembly does not have direct access to the Canvas, so each call needs to go through java script. Because 3D rendering engine needs to execute a lot of WebGL (or WebGPU) calls, this would be very slow. Also, in my opinion web will always be slow for high end and demanding 3D graphics. Anyway, the long time plan is to also provide support for web so that the same c# code could also run in a browser.

Vulkan is also an API with very little overhead, which makes it much faster than DirectX 11. What is more, Vulkan supports all new features that are added to new graphics cards, including ray tracing. This does not mean that Ab3d.DXEngine already supports ray tracing, but it is possible to add that and other new features in the future.

Because the new rendering engine was built from the ground up, it was possible to use all the know-how and experience from Ab3d.PowerToys and Ab3d.DXEngine to make its programming API clean and very easier to use. I admit that when using Ab3d.DXEngine and Ab3d.PowerToys, the API is not very nice in all cases. The Ab3d.PowerToy was built on top of WPF 3D objects that are not very extendable, so some compromises were needed (for example, cameras are derived from FrameworkElement and not from Camera). Also, Ab3d.DXEngine converts all WPF 3D and Ab3d.PowerToys objects into its own objects. This means that the application has two versions of each object. In other cases, some tricks must be used to provide Ab3d.DXEngine features to Ab3d.PowerToys and WPF 3D objects (for example using SetDXAttribute). Therefore, having an easy-to-use API was one of the primary goals of the new engine. Please contact me if you have any recommendations or find something that bothers you. 

 

I hope that you are already excited about the new rendering engine.
In that case, just jump into the samples page on GitHub: Ab4d.SharpEngine.Samples

There you will find solutions that show how to use the Ab4d.SharpEngine with WPF, AvaloniaUI, WinUI 3, SDL, Glfw. Some samples will run only on Windows; some will also run on Linux and macOS. Some will run on Android. iOS samples are coming in the near future. I also plan to add support for WinForms and MAUI. If you know of any other well know UI framework, please let me know and I will try to provide support for that too.

Check also the readme on GitHub as it provides a lot of other information.

 

Because you are an existing user of Ab3d.PowerToys and Ab3d.DXEngine, you are probably very interested in comparing the new engine with the current libraries.

Let's start with advantages of Ab3d.DXEngine and Ab3d.PowerToys:

  • Ab3d.DXEngine and Ab3d.PowerToys are very mature products that are tested and proven in the "field" by many customers.
  • Those two libraries currently provide more features and come with more samples that can be used as code templates for your needs.
  • Ab3d.DXEngine supports multi-threading and currently provides faster 3D rendering in many use cases.
  • Ab3d.DXEngine can use software rendering when there is no graphics card present (for example in virtual machines or on a server).
  • Ab3d.DXEngine and Ab3d.PowerToys can run on older .Net versions, including .Net Framework 4.5+.

Advantages of Ab4d.SharpEngine:

  • Ab4d.SharpEngine can run on multiple platforms. You can start writing code for Windows and later simply add support for Linux, macOS, Android and iOS. Or port just a smaller part of the application to other platforms.
  • Ab4d.SharpEngine uses Vulkan API that is the most advanced graphics API. It is actively developed and gets new features as new versions of graphics cards are released. This provides options to support all current and future graphics features (for example Ray tracing - not possible with DirectX 11).
  • As mentioned before, Ab4d.SharpEngine has a very clean and easy to use programming API. 
  • Working with WPF objects is very slow (accessing DependencyProperties has a lot of overhead). Also, Ab3d.DXEngine needs to convert all WPF objects into its own objects. Working with objects in Ab4d.SharpEngine is much faster.
  • Vulkan is a significantly faster graphics API than DirectX 11. Though the Ab4d.SharpEngine does not use all the fastest algorithms yet (no multi-threading), in the future the engine will be significantly faster than Ab3d.DXEngine.
  • Ab4d.SharpEngine is built on top of .NET 6 and that provides many performance benefits because of using System.Numerics, Span and other improved .NET features.
  • In the future Ab4d.SharpEngine will provide more functionality than Ab3d.DXEngine with Ab3d.PowerToys.

 

So, if you have a big and complex application that uses Ab3d.PowerToys and Ab3d.DXEngine, I would not recommend you to try to port it to the new engine. You could not just copy and paste the code to the new engine. Though the ideas and principles of both engines are still the same, for example there are TargetPositionCamera and MouseCameraController - both with almost the same properties and methods. But there are many smaller differences, for example BoxVisual3D is now BoxModelNode. Anyway, if you know how to use the existing engine, you will feel very familiar with the new engine also.

But if you are starting to build a new application with 3D graphics or would like to port some smaller part of your big application (for example a viewer with a few additional functionalities) to a more mobile format, then the new engine is a perfect choice for that. Also, if you are curious about how to program in .NET for other platforms or will have a little bit more time in December, I would be really glad if you could try the new engine and provide some feedback (you can also use Discussions or Issues on GitHub, or simply use email, forum or feedback form).

But please don't be too demanding. This is the first open beta and some things may not work as expected. In those cases, please see the Troubleshooting section on GitHub for more info.

 

Let me also share the planned road map for the new engine.

In the following weeks and months I will try to release new beta versions with fixes and improvements. After a few months, probably in Q2 or maybe in Q3 2023, the first production-ready versions should be released. Maybe some parts of the engine will remain in beta, for example AvaloniaUI, MAUI, macOS and iOS support. The plan is to have the main and most common parts ready for production: Windows (WPF, WinForms, SDL, Glfw), major Linux distributions (SDL, Glfw) and Android. 

 

And finally, I would like to assure you that Ab3d.PowerToys and Ab3d.DXEngine will still be actively developed, will get new releases and features and will have full support in the future!

 

I hope that the new engine will allow developers to use the beautiful c# language to create amazing apps with 3D graphics that could run on all possible platforms. If you have the right tools, then even 3D graphics is not hard!

And of course: Merry Christmas and happy new year!

Tags: , ,

Ab3d.PowerToys | DXEngine | SharpEngine

Super-smooth lines with many other features in new versions of 3D libraries

by abenedik 12. November 2020 11:12

I am happy to inform you that new versions of Ab3d.DXEngine and Ab3d.PowerToys have been released.

By the new version numbers you may think that this is just a smaller update, but I am sure that the content that follows will persuade you that this is another big and great update that can significantly improve the value of your application and provide you with some great new tools for your work with 3D graphics.

Here are the highlights of the new version:

  • Added support for super-sampling provides rendering of super-smooth 3D lines and better rendering of details.
  • Added support for creating edge lines and improved support for rendering object outlines. This can render the scene in a way that is standard for CAD programs.
  • Improved support for rendering the same 3D scene with different DXViewportView (each with different camera and render settings).
  • Significantly improved the performance of the DXEngine's update step.
  • Simplified hierarchical organization of Visual3D objects with using ContentVisual3D that defines IsVisible property and now also supports showing and hiding Visual3D objects in Children collection. This also greatly improves the performance of showing and hiding Visual3D objects.
  • Improved ViewCubeCameraController - the new version supports clicking on cube edges and corners. 
  • Added custom wpf3d file format that can store WPF 3D scene. The full source code to read and write wpf3d file is available with the samples project. This way the code can be adjusted to your needs.
  • Many other improvements and fixes.

 

The following image demonstrates the first two highlights:

Super-smooth 3D lines with using super-sampling in new Ab3d.DXEngine

The first step in creating the image above was to import an aircraft engine model from a file. Then a new EdgeLinesFactory.AddEdgeLinePositions method was called. This method analyses the 3D model and creates edge lines if the angle between two adjacent triangles is bigger than the specified angle. This way it is possible to get much more accurate edge lines than by showing the wireframe of the model. The problem with showing the wireframe is that it shows lines around all triangles even if they lay on the same plane (for example, a diagonal line on cube sides). After having the edge lines, we can show the lower part of the image.

But as the upper part of the image shows, with the new version of Ab3d.DXEngine it is possible to create a superior and much more professional looking result. 

The first thing that can be done with the Ab3d.DXEngine is to set line depth bias. This moves the 3D lines towards the camera and away from the solid model so it cannot occlude the lines when they occupy the same 3D space. In the upper image, this can be seen in the lower right part of the image where the line thickness changes because the solid model occludes the lines. The new version of Ab3d.DXEngine also improves using line depth by preventing the lines from being moved away from the 3D model (when using a perspective camera). This simplifies setting the correct line depth bias.

The second feature that improves appearance in the image above is the object's outline. This renders a thicker line around 3D models. The line is also drawn on places where there are no edge lines - for example, when a curved model ends - in the image above this is just below the "objects outlines" text.

But the most significant improvement of using the new Ab3d.DXEngine is the use of super-sampling that can produce super-smooth 3D lines. In the last few months a lot of effort was put into improving the quality of 3D lines. I first tried to create smooth lines by adjusting the alpha values on pixels near the edge of the line. This slightly improved line quality. But because of using transparency on the edges, this could create artifacts if lines were not rendered in the correct order. After some other tests, it finally became apparent that using super-sampling can provide the best results. Click here to see a screenshot from a line quality testing sample.

Super-sampling (SSAA) is an anti-aliasing technique where the 3D scene is rendered to a bigger image and then down-sampled to the final image. For example, 4x SSAA means that the rendering is performed to an image that has twice the width and twice the height of the final image (has 4 times the number of pixels). The image quality can be further improved when down-sampling uses a special filter that reads samples in a slightly rotated pattern and uses different weights on the read samples. As the image above shows, this can produce highly superior results.

The difference between super-sampling and multi-sampling is that with multi-sampling, the number of pixel shader invocations is the same as with no multi-sampling. In this case, the color that the pixel shader returns is saved to multiple pixels (samples). At the end of rendering the multi-sampled texture is resolved so that all the samples are used to produce the final pixel color. This can significantly improve edge aliasing. But because there were no more pixel shader invocations, this does not produce an image with more details. For example, 4x MSAA requires 4 times the memory because each pixel shader result is shared with 4 pixels, but the number of pixel shader invocations is the same as when no multi-sampling is used. This is the main difference compared to super-sampling. There the scene is rendered to a bigger texture. This means that 4x SSAA requires four times the memory and also four times the number of pixel shader invocations. As seen in the image above, using 4x MSAA can significantly improve line quality compared to using no multi-sampling. But using 8x MSAA does not provide any more significant quality improvement. But using super-sampling can provide much better results.

Because of much higher memory usage and the number of pixel shader invocations, using super-sampling comes with high costs. This may not provide a significant difference on a high-end graphics card, but on an integrated graphics card, the slow-down may be noticeable. Though the max supported super-sampling count is 64 (rendering to 8 times width and height), the high super-sampling count should be avoided in most cases. You should also be careful because the maximum texture width and height in DirectX 11 is 16384. For example, this limit is reached on a 4k monitor when 16x SSAA is used. The Ab3d.DXEngine knows about this limitation and can dynamically reduce the super-sampling count to stay below this limit. Also, because SSAA can be combined with multi-sampling (MSAA), the recommended setting to achieve super-smooth lines is to use 4x SSAA with 4x MSAA (this was also used to produce the image above). To see the memory requirements of the various settings, open the diagnostics window that now shows the required amount of memory. The diagnostics window can be opened in the samples project by clicking on the Diagnostics button. In your application you can show the diagnostics window by using the DXEngineSnoop tool and attaching to your application (more info on Ab3d.DXEngine diagnostics web page).

Also note, that because of super-sampling, the settings for standard GraphicProfiles have changed:

  • NormalQualityHardwareRendering is the same as before - using 4x MSAA and no super-sampling.
  • HighQualityHardwareRendering is now using 4x MSAA and 4x SSAA (before 8x MSAA was used - so now twice the memory is required and 4 times the number of pixel shaders invocations).
  • UltraQualityHardwareRendering is now using 2x MSAA and 16x SSAA (before 8x MSAA was used - so four times the memory is required and 16 times the number of pixel shaders invocations).

This is important because if you are using HighQualityHardwareRendering or UltraQualityHardwareRendering you should not be surprised if the new version will be slower than the previous version. To compare the performance, use the same settings, or keep in mind that the new super-sampling requires much more work behind the scene.

To summarize, if you show 3D lines, then the superior line quality should justify the costs of super-sampling - especially using 4x SSAA with 4x MSAA. But my recommendation is that you still use it wisely. The easiest option is that your application provides a setting that can change the graphics quality. This way users on slower computers can disable or reduce the super-sampling and still enjoy in great application performance but with reduces quality. To provide a suitable default quality setting, you may check the amount of graphics card memory, display's size and monitor DPI setting (see source code of SystemInfo class for a sample on how to get GPU memory size; you can get DPI settings by a new static GetDpiScale method on DXViewportView).

 

Ok, we have covered the first two points in the highlights list. Let's move on. The most obvious way to hide some of the 3D objects is to remove them from the 3D scene. But when this is done with Ab3d.DXEngine (and if the objects are not added back to the scene in the same frame), then the DirectX resources for the removed objects are disposed and removed from the graphics card. This also means then when those objects are added back to the scene, then the DirectX resources will need to be regenerated and sent to the graphics card.

Ab3d.DXEngine tried to solve this with improved support for IsVisible property that was available with the BaseVisual3D class from Ab3d.PowerToys library. In this case when the IsVisible property was set to false, then all the DirectX resources are preserved, but the rendering of the object is skipped in the rendering loop. This means that when the IsVisible property was set back to true, the object can be shown instantly as no resources need to be created.

Because all Visual3D objects from Ab3d.PowerToys are derived from that class, they all received that improved support. With using ContentVisual3D (also derived from BaseVisual3D) it was also possible to show and hide any GeometryModel3D or Model3DGroup objects that was set to ContentVisual3D.Content property. But if you want to show or hide a hierarchy of Visual3D objects, then you still needed to remove those objects from the scene and then add them back. This was finally solved with the new version of Ab3d.PowerToys and Ab3d.DXEngine that now also fully supports showing and hiding Visual3D objects from ContentVisual3D.Children collection.

What is more, because ContentVisual3D now defines a new ChildrenChanged event, it is much easier (and requires much less CPU time) for the Ab3d.DXEngine to check the changes in the Children collection. This makes the ContentVisual3D class a much more appropriate object to hold other 3D objects than the ModelVisual3D class. To simplify the usage of ContentVisual3D, there is also a new CreateContentVisual3D extension method that can simplify creating ContentVisual3D objects from any GeometryModel3D or Model3DGroup objects.

So using ContentVisual3D with Ab3d.DXEngine can reduce the time in the update phase (in this phase the objects are checked for changes and the RenderingQueues are updated). The new version also significantly reduces update time in some other very common cases. One such case is when an object's transformation is changed. Now, this is processed much faster and in a 3D scene with many objects can provide significantly lower update times. Also, changing individual positions or triangle indices in MeshGeometry3D now takes the faster update path.

Another great new feature is improved support for having different views of the same 3D scene. Each view can have a different camera and use different rendering settings. Before, this was possible only by creating new Viewport3D objects and duplicating the Visual3D objects in each Viewport3D (the MeshGeometry3D and Model3D objects can be shared). What is more, it was not possible to use the same SceneNode objects in multiple views. With the new version of Ab3d.DXEngine it is possible to create a DXViewportView by passing a master DXViewportView as a constructor parameter. This creates a child DXViewportView that uses the same 3D scene (DXScene object) but can provide its own camera and its own rendering settings (rendering scene as wireframe, rendering just some objects of the scene, or using some special effects on some views).

The new samples projects for Ab3d.PowerToys library also comes with a new Wpf3DFile class. This class provides the full source code to read and write wpf3d files. wpf3d is a custom binary file format that can save WPF 3D scene. It can save the hierarchy of Model3D objects with their materials. It can also save model metadata with a preview bitmap. This way you can quickly read the metadata and show that to the user. The following screenshot is showing a sample with four possible wpf3d files:

Simple dialog to import wpf3d files shows some file metadata and preview bitmap

The main use case for using this file format is to convert existing files in other file formats (for example fbx) into wpf3d files. Then you can simply use the Wpf3DFile class to read the files and do not need to distribute the native Assimp library with your application anymore. You can also change the Wpf3DFile source code and store some additional data relevant to you into the file. You may also want to encrypt the data, use any other file extension (not .wpf3d), or make any other change to the file structure.

The last feature that I would like to mention is an improvement to the ViewCubeCameraController.  Because the ViewCubeCameraController provides such an intuitive way to show the orientation of the camera, it is used by many users. Therefore, you will be happy to hear that the new version of ViewCubeCameraController supports clicking on the cube's edges or corners to rotate the camera. For users this is a very nice and useful feature. And what is the best - you just need to update to the latest version of Ab3d.PowerToys and do not need to change anything in your core to provide this new feature.

As always, there are many other new features and fixes. The best way to check them is to see them in action with new samples projects that come with both libraries - start the samples and pay attention to the NEW and UP icons in the samples list on the left (the UP icon also provides a tooltip of what is changed). You can also read the full change log on Ab3d.PowerToys history and Ab3d.DXEngine history.

You can get the new versions from new NuGet packages. If you have a valid updates subscription, you can download new installers from your User Account web page. To just test the new version you can also download the new evaluation version from the Downloads page.

 

Let me conclude with some future plans. 

The .Net 5 was just released two days ago (on 10 November). I did some testing with .Net 5 RC versions and both Ab3d.PowerToys and Ab3d.DXEngine compiled and ran without any problems there. But I run out of time to thoroughly test and update the release process to provide an official .Net 5 versions of the assemblies. But this will be done in the near future. So stay tuned for news about that.

And finally, a sneak peek of a more distanced future:

Early preview of Vulkan rendering engine for .Net running on Linux

This screenshot shows v0.2 of the new Vulkan based rendering engine. The screenshot shows it can run on Linux. There is a Rider IDE in the background. See great performance figures in the window title - note that this is running on an older system with i7 3770 @ 3.4 GHz and NVIDIA 970 GTX. The new rendering engine is being written from the ground up and will use the latest .Net features and all the know-how from Ab3d.PowerToys and Ab3d.DXEngine.

It is hard to say when the first official version of the new engine will be available. Using Vulkan API and different platforms is much more challenging than using DirectX 11 and Windows. Therefore, if you would like to speed up the development, participate in the development by providing feedback and testing on other platforms or would just like to share your wishes and ideas, you are most welcome to contact me.

As always, the goal is to provide you an awesome cross-platform rendering engine for technical, scientific and CAD-like 3D visualizations.

Tags: , , , , , ,

Ab3d.PowerToys | DXEngine