Major update of Ab2d.ReaderSvg brings better support for css styles and more

by abenedik 6. November 2018 17:00

I am happy to inform you that a new major version of Ab2d.ReaderSvg was just published.

The new version has a significantly better support for reading css styles. The new version of the Ab2d.ReaderSvg can now correctly read a css text with multiple class name definitions in one line. Also adding additional properties to already defined class names is now supported. Those two features are required to correctly read the following css definition:

.A, .B { fill: green; } 

.A { stroke: green; }

This update should greatly improve reading css styles from svg files. But because css styles can be incredibly complex, there are still cases that are not supported. Luckily, the main tools that can save to svg files usually do not use such complex css styles and therefore Ab2d.ReaderSvg should be able to read almost all the files.

 

An important new feature is also that ReaderSvg class now has two new delegates: BeforeWpfObjectCreatedCallback and AfterWpfObjectCreatedCallback. The first delegate is called before ReaderSvg creates a WPF object from the svg element. The delegate gets the xml text that is used to define the element. It can be used to create your own WPF object from the xml and pass that back to ReaderSvg. The other delegate is called after the WPF object is created by ReaderSvg. It gets the created WPF object and the xml text. This delegate can be used to read some additional properties from the xml and decorate or change the already created WPF object.

There are also some other improvements and fixes. The whole list can be seen on ReaderSvg versions history web page.

 

This shows that though the main focus of the AB4D company is on developing components for 3D visualization, the 2D tools and importers are still fully supported - most of the updates are based on the great feedback from the customers. So, if you get a svg file that is not correctly imported or you have a good feature request, please send me the svg file or a feature request.

Tags:

ReaderSvg

A critical update for Ab3d.DXEngine and a minor hotfix for Ab3d.PowerToys published

by abenedik 17. October 2018 17:07

I would like to inform you that a critical update for Ab3d.DXEngine and a minor hotfix for Ab3d.PowerToys has been published.

The critical problem that occurred in the previous version was that on high DPI settings the new hit testing did not work in all use cases. If a user was using the new hit testing it may appear that the mouse was offset by some amount. This is now fixed. If you were using the previous version 3.0., then please update the library to the version 3.1.

The Ab3d.DXEngine also comes with a few other improvements and new features. One of them allows using a texture when rendering instanced objects. When using textures with transparency, do not forget to set the UseAlphaBlend property on the InstancedMeshGeometryVisual3D to true. Also, in the case of rendering semi-transparent instances, they need to be sorted so that those farther away from the camera are rendered first (are defined first in the InstancesData array).

The other new feature is that MeshObjectNode can now render meshes with multiple SubMeshes defined. This means that you can create one giant vertex buffer and one index buffer and then use SubMeshes to define which triangles in those two buffers will be rendered with which material. This provides an optimal way for the graphics card to render objects. What is more, it is very easy and super fast (almost at no cost) to change which triangles use which material or to change a material.

This was already used by the DXEngine when a frozen Model3DGroup was rendered - in this case DXEngine combined all the meshes into one single vertex and index buffer and then defined SubMeshes for each used material. Now, this can be also achieved manually with using MeshObjectNode and SubMeshes. 

There are two new samples that demonstrate that. One shows a simple animation that changes SubMesh properties. The other new sample shows an efficient way of selecting a part of a mesh with changing its color. Usually, this is done with moving the selected triangles from the original mesh into a new mesh. The new mesh is then shown with the selected material. For complex meshes this is very inefficient. When using SubMeshes the same effect can be achieved with almost no performance cost. 

Efficient material animation with using SubMeshes

 

There is also a new sample that shows how to efficiently create huge height maps. The easiest way to show height maps is to use HeightMapVisual3D object from Ab3d.PowerToys library. But when creating huge height maps, this approach is very inefficient because it requires a lot of memory and takes long time to initialize (first MeshGeometry3D is created for WPF 3D objects and then this is converted into DirectX buffers). The new sample shows how to directly create DirectX buffers and then show the height map with created buffers.

This shows that Ab3d.DXEngine is build to provide great support for the most demanding and complex DirectX use cases. And all that power can be used from the .Net application.

The full list of changes can be found in DXEngine versions history page.

 

As mentioned before, the Ab3d.PowerToys also got a minor hotfix. This fixes two issues. The first one was that in case of using OrthographicCamera and negative NearPlaneDistance value, then some 3D lines may not be rendered. Another fix improves the FitIntoView method when there are no WPF 3D objects in the scene (there are only DXEngine SceneNodes objects).

What is more, the new version of Ab3d.PowerToys comes with an improved SceneEditor sample. The new version of the sample shows how to create a simple 3D scene editor where the user can create 3D boxes and spheres, move them around and edit their positions. The following image shows a screenshot from that sample:

SceneEditor sample

If you are using OrthographicCamera and are manually setting the NearPlaneDistance, then it is recommended to update to the latest version v8.2.6863.

Tags: , , , ,

Ab3d.PowerToys | DXEngine

PBR support and many other new features in new versions of Ab3d.DXEngine and Ab3d.PowerToys

by abenedik 29. August 2018 22:48

I am very excited to finally release a new major version of the Ab3d.DXEngine library and a new big release of the Ab3d.PowerToys library.

The list of major new features includes support for Physically Based Rendering (PBR), significantly improved hit-testing, better shadow rendering and many other performance and usability improvements. The new version also uses the latest version of SharpDX (v4.2).

The following image is showing the new Physically Based Rendering in action:

Pistol model rendered with PBR material with Ab3d.DXEngine

Standard materials define diffuse color, specular color and specular power.   In most cases this allows rendering quite realistic 3D scenes. But because this lighting model is using many simplifications it cannot provide a very realistic rendering. To solve that, some bright minds dug into the lighting physics and based on what is really going on a Physically Based Rendering (PBR) was "born". In this lighting model the major two properties that define how material is shown are metalness and roughness. Metalness distinguishes between metallic and non-metallic objects. This has the major effect on how much light is reflected and how much is absorbed and returned as diffuse light. Roughness defines how clearly the environment is reflected and how big and bright the specular shiness is.

In PBR it is possible to use textures to define different metalness and roughness values for different parts of the model. This can be nicely seen in the image above where the wooden parts or the pistol are rendered differently from the metallic parts because they have different metalness values.

The following image shows sample models with different metalness and roughness values:

models with different metalness and roughness values

Besides metalness and roughness, the PhysicallyBasedMaterial in Ab3d.DXEngine also supports base color (diffuse color), emissive map, ambient occlusion map and normal map (also called bump map).

Another great new feature of the new version of Ab3d.DXEngine is much better support for hit testing. Hit testing is used for all the interactions of the mouse or touch with the 3D objects. In hit testing, a ray is created from the mouse or touch position and then the ray is checked against the 3D scene and the hit objects are returned. In previous versions of the library all the hit testing was done by using hit testing build into WPF. This worked well in most cases. But it was not able to use it for optimized SceneNode objects that were not created from WPF objects because those objects were not "visible" from WPF. Also, hit testing on instanced objects required that WPF 3D objects were created for each instance. This greatly increased initialization time and memory usage.

The new version of Ab3d.DXEngine how includes its own hit testing code that supports all types of SceneNode objects. What is more, the new code works much faster than the hit testing code in WPF. It can do hit testing on instanced objects without creating 3D objects for each instance. When hit testing a mesh, each triangle in the mesh needs to be tested against the 3D ray. Because some meshes can have hundreds of thousands of triangles, this can take some time. But the new Ab3d.DXEngine can also very efficiently hit test such meshes. In that case an oct-tree structure (https://en.wikipedia.org/wiki/Octree) is used to group the triangles in the mesh into small nodes. This way only a fraction of the total number of triangles needs to be checked. This provides enormous performance benefits. The following screenshot shows how oct-tree is used to divide a teapot object:

Teapot divided by oct-tree structure

Another significant performance improvement is related to the use of the IsVisible property. This property is defined by all the objects that are derived from the BaseVisual3D objects from Ab3d.PowerToys library. This includes most of the Visual3D objects (BoxVisual3D, SphereVisual3D, ect.), all 3D line Visual3D and some other objects.

When you want to hide an object, it is very convenient to just set IsVisible to false. To show the object again, you can just set IsVisible back to true. What happened behind the scenes was that the object that was hidden was removed from the 3D scene. When IsVisible was set back to true, the object was added back to the 3D scene. This meant that when complex objects were hidden and shown, all the DirectX resources were disposed and then created again. So this quite common operation was not as fluent as it should be.

The new version of Ab3d.DXEngine greatly improves that because now setting the IsVisible property to false does not change the 3D scene but just marks the object to be skipped when rendered. This way hiding and showing an object is now an instantaneous action.

To provide advanced IsVisible processing to any Model3D object and not only objects derived from BaseVisual3D, the new Ab3d.PowerToys library provides a new ContentVisual3D object. For example, ContentVisual3D can be used to show or hide a 3D object that is read from a file (usually defined with a Model3DGroup).

The new IsVisible processing also has a disadvantage that I need to mention here. Because the 3D scene is not changed when IsVisible is set to false, this means that DXEngine will not render the object, but it will be still present in the WPF 3D objects tree. Therefore, if you are using WPF hit testing, you might get a hit result on an object that is actually not shown. The easiest way to solve that is to use hit testing from DXEngine. You can also filter the hit objects by checking if they are derived from BaseVisual3D and then checking the value of IsVisible property. It is also possible to disable the new IsVisible processing.

If you are using PixelsVisual3D to render many pixels, you will be happy to hear that now it is possible to specify a different color and a different size for each of the pixels. Also, pixels can be quickly hidden with setting pixel's alpha color value to 0 or size to 0.

Another bigger change with DXEngine is that the SharpDX library that is used as a managed DirectX wrapper has been updated from v4.0.1 to v4.2. This means that you will need to update this library. You can get the new version from NuGet or from the same folder as the DXEngine library.

Among other new things there are also a few new very interesting samples. One of them is demonstrating how to very efficiently use object instancing to animate many objects. The following screenshot is showing a real-time animation of one million (!) 3D arrows that runs at 60 fps:

Animating 1 million 3D arrows with instancing in Ab3d.DXEngine

Another screenshot shows the same sample with less arrow and a different camera angle:

Animating 3D arrows with instancing in Ab3d.DXEngine

The trick to doing such an animation is to construct the correct transformation matrix (instance's world matrix) that transforms the 3D arrow mesh so that it points in the correct direction.  Because this may not be very easy to understand, there is another new sample that teaches you step by step how to create such matrices - here is a screenshot from that sample:

Instancing matrices guide

This knowledge is very important for performance because it teaches you how to use instancing for scenarios that you may not think of. And using instancing instead of many simple objects is in many cases the most beneficial performance improvement that you can do.

Because there are many WinForms users of Ab3d.DXEngine, I have updated the WinForms samples project and added code that shows new efficient ways to use the rendering engine. The samples also got new code comments.

 

So far I have been mostly wringing about Ab3d.DXEngine. But also the Ab3d.PowerToys library got tons of new features and capabilities.

One of the most important new one is that the library now comes with the new version of Assimp importer (http://www.assimp.org or https://github.com/assimp/assimp). This means that many new file formats are supported - the new list of supported file formats that can be imported is really long: .3d, .3ds, .3mf, .ac, .ac3d, .acc, .amf, .ase, .ask, .assbin, .b3d, .blend, .bvh, .cob, .csm, .dae, .dxf, .enff, .fbx, .glb, .gltf, .hmp, .ifc, .ifczip, .irr, .irrmesh, .lwo, .lws, .lxo, .md2, .md3, .md5anim, .md5camera, .md5mesh, .mdc, .mdl, .mesh, .mesh.xml, .mot, .ms3d, .ndo, .nff, .obj, .off, .ogex, .pk3, .ply, .pmx, .prj, .q3o, .q3s, .raw, .scn, .sib, .smd, .stl, .stp, .ter, .uc, .vta, .x, .x3d, .x3db, .xgl, .xml, .zgl.

Also, the list of file formats you can export to has been extended significantly. You can now export to the following file formats: dae, x, stp, obj, obj, stl, stl, ply, ply, 3ds, gltf, glb, gltf, glb, assbin, assxml, x3d, fbx, fbx, 3mf.

If you were already using Assimp importer and would like to switch to a new version, note that the new version has different native libraries requirements. See the comments in the samples or the Ab3d.PowerToys.Assimp.chm help file for more info.

There are also many other features or improvements. For example, if you were using WireGridVisual3D to show a wire grid, you will be happy to hear that now it is possible to define different major and minor grid lines. This makes the grid much nicer and required a minimal change in the code.

 

To get a full list of changes, see the Ab3d.PowerToys versions history web page.

Also, check the Ab3d.DXEngine versions history.

Commercial users can get the new version from their User Account web page. Others can download the new evaluation version. The best way to know more about the new features is to check the new samples projects. As always, the new samples are marked with NEW icon and the samples that are significantly updated with UP icon.

 

Let me finish with a few words about my future plans. 

One of the things that I would like to implement as soon as possible is to create a special version of the dll that could be distributed through NuGet and would provide evaluation and commercial version. This would also allow me to move the samples to the GitHub.

I also have a few ideas on how to provide some solutions to improve performance in some commonly used scenarios. I also want to update the support for Oculus Rift (also with help from some customer provide support for Avatars) and add support for OpenVR. And there are many other great new things waiting on my todo list.

 

So stay tuned...

Tags: , , , ,

Ab3d.PowerToys | DXEngine

A new update of the metafile read (Paste2Xaml and Ab2d.ReaderWmf library) published

by abenedik 14. March 2018 21:38

I would like to inform you that a new update of metafile read (Paste2Xaml and Ab2d.ReaderWmf library) has been published.

The following is a list of improvements:

  • Added CreateTextBlockForEachCharacter property to ReaderWmf - this created a new TextBlock for each character and allows correct positioning of characters according to character spacing defined in the metafile.
  • Added AllowedCharacterSpacingWidthDifference property to ReaderWmf - it specifies when ScaleTransform is used to scale text (this also makes the LimitToScaleCustomTextWidth property obsolete).
  • Added support for reading EMR_POLYBEZIERTO elements.
  • Improved calculating line thickness in some cases.
  • In some cases prevented adding empty Rectangle (Width or Height is 0) with TextBlock elements
  • Added support for different x and y values in MillimetersInInch header value - this scales the whole image based on the difference.
  • Cleared the current path if EndPath command is called without BeginPath command
  • Improved reading images with negative scale transformations.
  • Improved positioning text for some special use cases (correctly position text based on the TextAlign mode).
  • Fixed ResourceDictionaryWriter so that the ResolveResourceKeyCallback is called also for root keys.

Commercial users with a valid updates subscription can download the new version for their User Account web pages. Others can check it by installing the evaluation version from the Downloads web page.

Tags: , , ,

ReaderWmf

A maintenance update of the ZoomPanel library published

by abenedik 28. February 2018 09:11

I would like to inform you that a new maintenance update of ZoomPanel library has been published.

The following is a list of improvements:

  • Prevented slight content movement that occurred when a user clicked on ZoomPanel (the movement was noticeable when the content was zoomed in).
  • Added ViewboxAnimationStarted event to be notified when the zooming animation is started (there is already a ViewboxAnimationCompleted event).
  • Added UseLowQualityBitmapScalingModeWhenAnimating property that allows using LowQuality BitmapScalingMode during animation to improve the performance of animations (for very big bitmaps or for animations on slow computers).

Commercial users with a valid updates subscription can download the new version for their User Account web pages. Others can check it by installing the evaluation version from the Downloads web page.

Tags:

ZoomPanel

Ab3d.DXEngine hotfix published

by abenedik 22. December 2017 11:02

I would like to inform you that a hotfix for Ab3d.DXEngine has been published.

This hotfix fixes a few issues that are mostly related to the DPI scale. This is the list of fixes:

  1. Fixed using actual system DPI scale in DXViewportView.
  2. Fixed using DPI scale when rendering hardware accelerated PolyLines.
  3. Improved using dpi values in RenderToBitmap method.
  4. Fixed using Attenuation values when using PointLight.

 

1)

The first issue is that the DXViewportView did not use the actual system scale factor (used for high DPI monitors).

For example, when a user set system scale factor to 200% (192 DPI), then WPF scales all its elements accordingly. This means that a Rectangle with size 800 x 600 is actually rendered to 1600 x 1200 pixels. The Ab3d.DXEngine did not automatically set the dpi scale so by default the 3D scene was rendered to 800 x 600 pixels and then WPF scaled the rendered scene to 1600 x 1200 pixels.

It was possible to solve this with manually set the DpiScaleX and DpiScaleY properties on DXViewportView.

The new version improves that so that the DpiScaleX and DpiScaleY properties are automatically set from the actual system dpi values.

 

2)

The second issue is also related to DPI scale settings. The problem was that the thickness of the hardware accelerated 3D polylines (introduced in the Ab3d.DXEngine 2.3) was not increased when the DPI scale was bigger than 1.

This means that on high DPI monitors the polylines (also 3D text lines) appear too thin. What is more, when simple disconnected lines and connected polylines are rendered on the same 3D scene, the thickness of the disconnected lines will be correctly increased, but the thickness of the polylines will not be increased by the dpi scale.

 

This problem is solved in this hotfix.

 

3)

The third issue that is solved is that dpi values in RenderToBitmap method are now correctly used.

 

4)

The last issue that is solved in this hotfix is that PointLight Attenuation values are now correctly used in the shader. The Attenuation values can be used to specify how the light strength is decreased with the distance from the light.

 

Those fixes should make the engine run well on high DPI monitors.

To conclude, I would really like to wish you a Merry Christmas, all the best in the new year and that you will create amazing applications with great 3D graphics.

Tags: , , ,

DXEngine

New version of Ab3d.DXEngine and Ab3d.PowerToys bring support for normal mapping and many other great new features

by abenedik 6. December 2017 23:26

I am happy to inform you that a great new update of main 3D libraries is available.

This time most work was done to improve the Ab3d.DXEngine - DirectX rendering engine.

 

The highlights of the new version are:

  • Added support for normal mapping (also called bump mapping).
  • Added rendering 3D lines with patterns (enables rendering of dashed and dotted 3D lines).
  • Improved texture loading with support for loading DDS files.
  • Improved Assimp importer that can now also read and play keyframe and skinned animations from many 3D file formats (including fbx and dae).

 

DirectX 11 normal or bump mapping with DXEngine

Normal mapping is now supported with a new MultiMapMaterial class. This material defines a list of maps or textures where for each map its usage type is defined. This way it is possible to define a material with diffuse, normal, specular and also environment map. A drawback of the current version is that shadow rendering is not yet supported where rendering objects with MultiMapMaterial .

 

Dashed and dotted 3D lines with Abd3.DXEngine

3D lines rendering is greatly improved in this version of Ab3d.DXEngine. There is now a new ILinePattern interface that defines LinePattern, LinePatternScale and LinePatternOffset properties. This not only allows rendering dashed and dotted lines but with changing LinePatternOffset it also provides an option to animate the dashed lines - for example, to show a way or direction. Also, this version now supports full hardware acceleration of rendering connected 3D lines (polylines). This means that you do not need to use special properties to render connected 3D lines as disconnected 3D lines anymore.

 

What is more, both Ab3d.DXEngine and also Ab3d.PowerToys now have a new MitterLimit property that defines when a sharp line connection is turned into beveled (cut) line connection.

 

Skeletal animation with Ab3d.PowerToys

3D models can be read into your application with using Assimp importer library that can read data from almost any 3D file format. But until now only static models can be imported. The only way to play animations was to use Ab3d.Reader3ds library and play animations stored with 3ds files. But the new version of Ab3d.PowerToys.Assimp library supports reading keyframe and also skinned animations. There is also a new AssimpAnimationController that can play both keyframe and skinned animations. This way it is possible to read animations from almost any 3D file format that support storing animation data.

 

Optimized point cloud DirectX rendering with Ab3d.DXEngine

A lot of work was also dedicated to providing an efficient way of rendering many millions of pixels - the so-called point clouds. The new OptimizedPointMesh class can optimize rendering of huge point clouds in two ways. First, it can determine which parts of point cloud are visible to the camera. Second, on the visible parts it can check the following positions and if they would be rendered so close together that the distance on the screen would be less then one pixel, they are rendered only once as only one pixel. Those two optimizations can in most of the cases provide huge performance improvements (but still, investing in a high-end graphics card is the most efficient way to deliver substantial performance gains).

 

When 3D models with very detailed textures (for example 4096 x 4096) are loaded, the texture initialization can take quite a lot of time and memory. Most of the time and memory is used to create mipmaps of the texture. Those are required to get efficient color sampling on the graphics card. To improve this, modern 3D games use DDS texture formats. This file format is optimized for the graphic card and also alredy include mipmaps.

 

The new version of Ab3d.DXEngine provide a few easy ways to load DDS textures instead of standard png or other files. This can significantly improve load time.

 

There are also many other improvements and fixes. The following is the full list of changes:

Ab3d.DXEngine v2.3:

  • Implemented rendering materials with diffuse, normal (bump) and specular texture. Note: does not work yet with shadow rendering.
  • Added MultiMapMaterial that can be used to render material with diffuse, normal, specular and environment reflection texture.
  • Added DXAttributeType.MeshTangentArray that can be set to the MeshGeometry3D with SetDXAttribute extension method and allows attaching tangent array to MeshGeometry3D
  • Added Ab3d.DirectX.Utilities.MeshUtils.CalculateTangentVectors method (can be used calculate tangents on the CPU for objects that are rendered with normal / bump map)
  • Added support for rendering 3D lines with custom pattern. This allows rendering dashed and dotted lines (only for disconnected 3D lines; not for poly-lines):
  • Added ILinePattern interface with properties that define line pattern: LinePattern, LinePatternScale and LinePatternOffset.
  • Implemented ILinePattern with LineMaterial object.
  • Added LinePattern, LinePatternScale and LinePatternOffset to DXAttributeType. This way it is possible to specify line pattern parameters on LineVisual3D objects with using SetDXAttribute extension method.
  • Added support for rendering connected 3D lines (PolyLineVisual3D, etc.) with full hardware acceleration. Note that lines with arrows are not rendered with full hardware acceleration.
  • Changed default value of DXScene.RenderConnectedLinesAsDisconnectedLinesThicknessLimit from 3 to 0 - so connected lines that are thinner than 3 are not rendered as disconnected lines by default.
  • Added IPolyLine interface with IsPolyLine and MiterLimit properties.
  • Updated LineMaterial to implement IPolyLine interface.
  • Improved time and memory consumption when reading textures.
  • Added Ab3d.DirectX.TextureLoader.LoadShaderResourceView method that can be used to load textures from standard image files (png, jpg, tiff, gif, bmp) and from DDS files.
  • Added Ab3d.DirectX.TextureLoader.CreateShaderResourceView method that can create ShaderResourceView from texture stored in byte array (for cases when bitmap is read from a stream).
  • Added static bool LoadDdsIfAvailable field to WpfMaterial. When LoadDdsIfAvailable us true, then the texture loader will check if there is a DDS file with the same name but dds file extension. In this case the DDS file will be loaded. Using dds files can greatly improve required load time and memory usage.
  • Added static CreateTexture2D method to WpfMaterial that creates a ShaderResourceView from the specified WPF BitmapSource.
  • Created OptimizedPointMesh class that can be used to show point cloud and can dynamically reduce the number of rendered positions to improve rendering performance.
  • Make CalculateCameraPlanes on DXScene public. The method calcualates zNear and zFar values for the specified camera.
  • Added ParentNodeChanged and ResourcesInitialized events to SceneNode.
  • Added ForegroundRenderingQueue to DXScene. This is a new rendering queue that is rendered after GeometryRenderingQueue but before TransparentRenderingQueue.
  • Set default values of ReadZBuffer and WriteZBuffer properties on PixelMaterial to true.
  • Removed ScreenSpaceLineNode constructors that takes both isPolyLine and LineMaterial as parameters - IsPolyLine values is now provided only by LineMaterial parameter (when it implements the IPolyLine interface).
  • Added CustomRenderableNode and CustomRenderablePrimitive. Those two SceneNode classes simplify using custom rendering logic to render 3D objects with providing a callback method that is called to render the 3D object (used can call Draw calls on DirectX device in the callback method).
  • Added DXAttribute OnSceneNodeCreatedAction. Its value can be set to a callback method defined by an Action<SceneNode>. The callback method is called after a SceneNode is created from the WPF object.
  • Added DXAttribute OnDXResourcesInitializedAction. Its value can be set to a callback method defined by an Action<object>. The callback method is called after the specified DXEngine's resource is initialized and DirectX resource objects are created.
  • Fixed problems when color from PixelEffect is used to render 3D lines instead of the color defined in the LineColor property (and vice-versa).
  • Added dpiX and dpiY parameters to DXView.RenderToBitmap method (they default to 96 but can be changed by the user).

Breaking changes:

  • Renamed Ab3d.DirectX.ContexStatesManager class to Ab3d.DirectX.ContextStatesManager to fix spelling of the class.

Apart from samples that demonstrate new functionality the following samples are also added or improved:

  • Added BackgroundObjectsCreation sample that shows how it is possible to initialize 3D objects on the background thread so that when they are shown the UI thread is not blocked for a longer time.
  • Added Frustum culling sample. The sample shows how to determine which 3D objects are visible in the camera view. 
  • Improved WinForms sample to show how to use DXViewportView in WinForms with SharpDX.RenderForm. Using DXViewportView in WinForms application allows easy conversion of samples from Ab3d.DXEngine and Ab3d.PowerToys to WinForms application.

 

Ab3d.PowerToys v8.1

  • Added MiterLimit property to PolyLineVisual3D, MultiPolyLineVisual3D, RectangleVisual3D and LineArcVisual3D (all lines derived from BasePolyLineVisual3D). The MiterLimit value specifies when the mitered line joint is changed into beveled line joint.
  • Added support to read 3D lines from obj files with ReaderObj. Before lines can be read, the ReaderObj.ParentModelVisual3D property must be set. Lines color is get from material's diffuse color (or ReaderObj.DefaultMaterial). Line thickness is always set to 1.
  • Improved XInputCameraController when to continuously move up or down when the DPad buttons are pressed and when MoveVerticallyWithDPadButtons is true  (before user needed to release the button and press again)
  • Added support for ModelUIElement3D objects when calling ModelUtils.GetBounds and ModelIterator.IterateGeometryModel3DObjects methods
  • Added CurrentFrameNumber property to AnimationController
  • Changed type used for FrameNumber in animation classes from int to double.
  • Fixed Ab3d.Utilities.Dumper.GetMatrix3DText to correctly use the specified indentText and newlineText
  • Added static FormatMatricesHorizontally method to Ab3d.Utilities.Dumper class
  • Fixed Camera.GetMousePositionOnPlane method when using OrthographicCamera and when camera's Offset is not zero (Offset is changed when camera is moved).
  • Added a new constructor to Ab3d.Utilities.Plane class that takes a position on a plane and plane's normal.
  • Added GetClosestPointOnPlane method to Ab3d.Utilities.Plane class
  • Added GetPerspectiveScreenSize, GetOrthographicScreenSize, GetPerspectiveWorldSize and GetOrthographicWorldSize to Ab3d.Utilities.CameraUtils
  • Added GetWorldSize and GetScreenSize to BaseCamera
  • Added static bool ImmediatelyLoadTextureFiles field to MaterialTypeConverter to control how the BitmapImages are created (can prevent locking the read file because file is in use). See comments for the field for more info.
  • Line3DFactory.CreatePolyLine3D method was renamed into Line3DFactory.CreateMultiPolyLine3D for those overrides that takes a List of Point3DCollection objects
  • Added protected OnMouseMove, OnMouseButtonUp, OnMouseButtonDown and OnMouseWheel to MouseCameraController. This make it possible to use MouseCameraController in WinForms application (with SharpDX.RenderForm).
  • Improved performance of calling AlignWithCamera on TextBlockVisual3D

Breaking changes:

  • Changed Ab3d.Utilities.Plane class to use a more standard a*x + b*y + c*z + d = 0 equation instead of a*x + b*y + c*z = d. If you are creating Plane object with a, b, c and d parameters, then you will need to flip the sign of the d parameter.

Assimp:

  • Added support to read bones and skeleton information.
  • Added support to play keyframe and skeletal animation (use Ab3d.Assimp.AssimpAnimationController that is defined in Assimp folder in main Ab3d.PowerToys samples project).
  • Set name of the created WPF materials from names defined in the file. The material's name can be read with material.GetName extension method (defined in Ab3d namespace).
  • Added GetAssimpMeshForGeometryModel3D, GetWpfMaterialForAssimpMaterial and GetAssimpMaterialForWpfMaterial to AssimpWpfConverter.

Tags: , , , ,

Ab3d.PowerToys | DXEngine